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The bacterial enzyme, ethanolamine ammonia-lyase (EAL, EC Scheme 1. EAL Reaction—Carbinolamine Intermediate

4.3.1.7), catalyzes the adenosylcobalamin (AdoCbl)-dependent +HyN +H,N
deamination of ethanolamine or 2-aminopropanols to ammonia and H
the corresponding aldehydélhe reaction is one of severat-2 H

. o H
radical rearrangements/eliminations catalyzed by AdoCbl-

H H
H
dependent enzymés?* The paradigm for these reactions is an H

OH
H H
. H .
interchange of a group at C2 and a hydrogen atom at C1. With the ~ AdoCbl === Ad0—< Cob(lhalamin Adr(,,,,H

exception of glutamate mutaejechanistic details of the migration H 2

steps in the AdoCbl-dependent enzymes are not well under&tood. y on E / oH
The EAL reaction can be considered as a-€21 migration of NG
ammonia, followed by decomposition of the product carbinolamine HHNH . HH .
(Scheme 1}. H T p NHs

Migration of ammonia to C1 is not strictly required to form

acetaldehydé.The migration mechanism has been demonstrated 720/ 1. - EAL Kinetic Parameters

in the related enzyme dioldehydrase and derives some support from substrate K (uM) Keat (s77)
stereochemistry.Computational studies have indicated that both ethanolamine 1.9 0.2 30+ 1

an internal migration of ammonia or direct elimination are energeti- (R)-2-aminopropanol *2 0.067+ 0.001
cally feasibles® (9)-2-aminopropanol 0.88 0.06 0.12+0.01

The mechanism includes two H atom abstraction steps that are
energetically demanding. Isotopes of H have been used to determinergpje 2. 15N Isotope Effects on EAL
the contributions of these H atom transfers to the overall ‘rate.

- bstrat Y n

Transfer of3H from the 3 position of AdoCbl to acetaldehyde > Sr_ae v

during turnover shows an isotope effect (IE)0f002 Deuteration ethanolamine 1.001F 0.0004 !
f b f eth lami Its i b lami (R)-2-aminopropanol 1.0012 0.0002 3

0 car_on 1 of ethanolamine results in a IE on cob(Ihalamin (9-2-aminopropanol 1.005% 0.0002 3

formation (carbor-cobalt bond cleavage) 6f10 in the pre-steady

state'® The observation of a deuterium KIE on carbarobalt bond aNumber of determinations.

cleavage is evidence that this step is kinetically coupled to H atom
transfer!! The large hydrogen IE’s observed with EAL and other
AdoCbl-dependent enzymes have been attributed to hydrogen
tunneling*12 The steady-state |E Ovnax for [1-2H;]-ethanolamine

is ~6.213For (§- and R)-2-aminopropanol, theV's are both~5.14 _ _ _

Attenuation of the?H IE in the Viax Suggests that H-insensitive IE = log(1 — f/log(1 pr/R°) @
steps in the reaction contribute to limiting of the rate. For example
VIK for the EAL reaction is sensitive to external magnetic fields,

suggesting that radical pair formation or recombination steps are 5monia, and, is the SN/N ratio for the product after partial

reflected inV/K.1> The contribution td//K of C—N bond-breaking  conyersionK,s andkes for the three substrates were measured
and -making steps in the mechanism has not been measured. TQ, 10 cm path length cuvettes using a coupled assay with alcohol
assess the contribution ofN bond-breaking and -making /K dehydrogenase.

of the EAL reaction, we measurééN IE's on the deamination All three of the substrates tested gave measurable, ndfidal

reaction using ethanolamineR)t2-aminopropanol, and -2 IE’s. For ethanolamine andR}-2-aminopropanol, the effects are
aminopropanol as substrates. These three substrates provide a rangg, the order of 0.1%. Fot§(-2-aminopropanol, the effect is nearly
of 3 orders of magnitude iW/K (see Table 1). 5 times larger at 0.5% (Table 2).

Salmonella typhimuriurEAL was overexpressed . coliand
purified essentially as described previou¥\EAL reactions were excess of 3% for enzyme-catalyzed polar reacti@msssuming
run either to completion or te-50% completion, quenched by 4t intrinsic!®N IE’s for radical reactions are similar to their polar
addition of HCI, and EAL was removed by ultrafiltration (see gquivalents, then it is clear that tHeN IE's measured here are
S.upport|7ng Information). The ammonia generated was steam gjgnificantly attenuated by other steps in the catalytic cycle.
distilled” and analyzed by isotope ratio mass spectroniétry. There are two steps in the reaction that can give rid8NdE's—
*Current address: Department of Biochemistry and Molecular Biophysics, the rea_rrangement of _SUbStra_te radical and the e"mmatlon_Of
University of Arizona, Tucson, AZ 85721-0088. ammonia from the carbinolamine. EPR measurements on radical

Fractional reaction was determined by a coupled assay for ammonia
using glutamate dehydrogend8dsotope effects were calculated
using eq 1:

» wheref is the fractional extent of reactioR, is the15N/%“N ratio
of the starting substrate determined by 100% conversion to product

Cleland and co-workers have determined intrini$\d IE’s in
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For ethanolamine, the spectrum is dominated, not by the substrate
radical, but by a product, or product-related radiaihe observa-
tion of a product-related radical for ethanolamine in the steady state
suggests that steps subsequent to the formation of the product radical

A are slower than thé®N-sensitive steps in the catalytic cyeta
scenario consistent with the observation of a sifall IE.
B These results show that the relative heights of kinetic barriers
‘ encountered by the three substrates differ such that intermediates
C corresponding to different stages of the reaction or their steady-

state levels differ (see Supporting InformatioiN-sensitive steps
WE N N N N make a significant contribution t@/K with (S)-2-aminopropanol.
3000 3100 3200 3300 3400 3500
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Figure 1. EPR spectra of steady-state 2-aminopropanol radicals at the active GM35752 (G.H.R.) and GM18938 (W.W.C.). The authors ac-
site of ethanolamine ammonia-lyase. Ethanolamine ammonia-lyase andknowledge helpful discussions with Steven Mansoorabadi.
adenosylcobalamin were mixed with 2-aminopropanol and frozen by dipping

in liquid nitrogen. (A) §-2-aminopropanol. (B)R)-2-aminopropanol. (C) Supporting Information Available: Sample preparation for isotope
[1-2H;]-(R)-2-aminopropanol. Spectra were recorded at 77 K. The ordinate ratio mass spectrometry, further discussion of barrier heights. This
is scaled such that amplitudes are proportional to concentration. Samplesmaterial is available free of charge via the Internet at http:/pubs.acs.org.
contained 0.24 mM enzyme, 0.47 mM adenosyl-cobalamin, 25 mM
2-aminopropanol, and 0.01 M Hepes/NaOH pH 7.5.
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